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A Model for Weak Electrolytes 1 

J. C. R a s a i a h  2 

The structural and thermodynamic properties of a model electrolyte in which 
oppositely charged ions bind at a distance L through a delta function inter- 
action are reviewed. The sticky electrolyte model (SEM), as it is called, mimics 
the behavior of a weak electrolyte and requires a theory (or approximations) for 
the stickiness (or bonding) between the ions and for the electrical interactions 
between them. Analytic solutions for charged hard spheres of diameter a with 
L = a/n where n = 1, 2, 3, 4, and 5 have been obtained when the hypernetted 
chain (HNC) approximation was used for the correlation functions inside the 
hard core and the mean spherical approximation (MS) was employed outside 
this region. Numerical solutions to the HNC approximation applied to both 
these regions show only small changes in the internal energy and the degree of 
association as a function of the concentration. The effect of a solvent on the 
association of a weak electolyte is assessed from the analytic solutions to the 
HNC/MS approximation in the presence of a hard sphere solvent and a dipolar 
solvent. It is found that the degree of association of the weak electrolyte is 
considerably enhanced by the packing effect of a solvent and is decreased by ion 
solvation. In the limit of complete association, the system consists of dumbells 
with extended dipoles provided L < a/2 when polymerization is averted by the 
repulsion between the hard cores of like ions. The energies of the systems of 
extended dipoles are found to have a simple analytic form when they are 
calculated according to the mean spherical approximation. 

KEY WORDS: electrolytes (weak); dipolar dumbells; hypernetted chain 
approximation; ion association; mean spherical approximation; sticky electro- 
lyte model. 

1. I N T R O D U C T I O N  

In  a w e a k  e l ec t ro l y t e  (e.g., a n  a q u e o u s  s o l u t i o n  o f  ace t i c  a c i d )  t he  s o l u t e  

m o l e c u l e s  A B  are  i n c o m p l e t e l y  d i s s o c i a t e d  i n t o  i o n s  A + a n d  B a c c o r d i n g  

to  t he  f a m i l i a r  c h e m i c a l  e q u a t i o n  

A B = A  + + B -  (1)  
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The forces binding the atoms in AB are chemical in nature and must be 
introduced, at least approximately, in the Hamiltonian in a theoretical 
treatment of this problem. The binding between A and B in the dimer AB 
is quite distinct from the formation of ion pairs in higher-valence electro- 
lytes (e.g., aqueous solutions ZnSO 4 at room temperature) where the 
coulomb interactions between the ions lead to the presence of associated 
pairs and clusters which account for the anamolous conductance and 
activity data of these electrolytes at low concentrations [1, 2]. The shield- 
ing of the charges on the ions with increasing electrolyte concentration 
induces the ion pairs to redissociate and the clusters to breakup above a 
critical composition [-2, 3 ], whereas the population of dimers produced by 
the chemical bonding represented in Eq. (1) always increases with the 
concentration of the solution. In this paper I review recent work on weak 
electrolytes in which dimerization (as opposed to ion pairing) is the result 
of chemical bonding between oppositely charged ions. 

A simple model for a strong electrolyte is the restricted primitive 
model (RPM) in which the ions are represented as charged hard spheres 
of the same diameter a immersed in a structureless solvent of dielectric 
constant e0. The pair potential uu(r ) has the form 

u , / r )  = . s  uij (r) + eiej/eor (2) 

where us u U (r) is the hard sphere potential, which is infinite for r < a and 
zero otherwise. The equilibrium properties of the restricted primitive model 
electrolyte can be calculated quite accurately using the hypernetted chain 
(HNC) [-4] approximation, which assumes that the direct correlation 
function 

cij(r) = -flu~(r) + g~j(r) - 1 - In gij(r) (3) 

where g~(r) is the pair correlation function and /~ = 1/kT in which k is 
Boltzmann's constant and T is the absolute temperature. This equation is 
solved together with the Ornstein-Zernike equation, which provides 
another relation between go(r) and cij(r). The effects of ion pairing in 
higher valence electrolytes and the excluded volume of the ions for all 
charge types are quite faithfully represented in this approximation [6]; the 
main drawback of the theory is that the solutions have to be obtained 
numerically. The mean spherical approximation (MSA) for the RPM elec- 
trolyte, on the other hand, can be solved analytically [-5]: it assumes that 
instead of Eq. (3) 

co(r) = -fluij(r) for r > ~ (4) 
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This is supplemented with the core condition that 

g~j(r) = 0 for r < r  (5) 

Waismann and Lebowitz [5] determined the solution to this approxima- 
tion and showed that the thermodynamic properties obtained from the 
energy equation are quite accurate for lower-valence electrolytes [5, 7]. 
The excess energy E e• is given by 

, d in  t0] EeX - x [ ( l + x ) - ( l + 2 x ) l / 2 ]  1 + d-]~--fn T ~ (6) 
NKT = 4rcpo -3 

where t 0 is the dielectric constant of the solvent, k is Boltzmann's constant, 
T is the temperature in degrees Kelvin, x = ~r where 1/~c is the Debye 
length defined by K2= 4zrpeZ/~okT, and p is the density of the ions. The 
osmotic coefficient ~bE calculated from the energy in the MSA has the form 

~b E = ~b ~ + [-3x + 3x(1 + 2 x )  1/2 - 2(1 + 2x) 3/2 + 23/12~pa 3 (7) 

Here ~b ~ is the osmotic coefficient of the corresponding uncharged hard 
sphere system. Equation (6) for the energy is related to the heat of dilution 
of the electrolyte. These are remarkably simple analytic expressions which 
are directly applicable to solutions in which ion pairing is negligible. 
Nevertheless, the MSA can also be used to predict the thermodynamic 
properties of solutions in which ion pairing is significant by making certain 
assumptions about these pairs; it is assumed, for instance, that the 
oppositely charged ions within a separation d (greater than the distance of 
closest approach a) are paired and that the interactions of the free ions can 
be treated with sufficient accuracy in the mean spherical approximation 
(2, 8, 9]. The idea of dividing the system into free ions and associated pairs 
was first suggested by Bjerrum [10] shortly after the Debye-Huckel theory 
(11) was proposed. The modern theory of ion pairing or clustering uses a 
different definition of d from Bjerrum's, employs the MSA instead of the 
Debye-Huckel theory for the free ions, and determines the number of pairs 
or clusters by minimizing the free energy. Corti and Fernandez-Prini [2] 
have used a theory of this type to predict the osmotic coefficients of 
2-2 electrolytes in aqueous solution up to concentrations of 3 M. 

In what follows we see that the mean spherical approximation is also 
useful for weak electrolytes and that the excess energy for these solutions 
in the MSA is given by an equation similar to Eq. (6). An expression of the 
same form applies for the energies of dipolar dumbells as well since they 
can be regarded as fully associated weak electrolytes! 
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2. A M O D E L  F O R  W E A K  E L E C T R O L Y T E S  

The model calculations that I review are for the sticky electrolyte 
model (SEM) in which a delta function interaction is introduced into the 
Mayer f  function for the oppositely charged ions at a distance L ~< a, where 

is the hard sphere diameter. The model was introduced by Cummings 
and Stell [12] in their study of dimerization reactions in uncharged 
systems and is closely related to Baxter's model [13] for adhesive hard 
spheres. Baxter and also Cummings and Stell solved these models in the 
Percus-Yevick (PY) approximaton using the Wiener-Hopf factorization of 
l - p c ( k ) ,  where e(k) is the Fourier transform of the direct correlation 
function c(r). The technique was introduced earlier by Baxter [14] in his 
solution of the Percus-Yevick approximation for hard spheres and the 
extension of the method to study electrolytes was developed independently 
by Thompson [15] and by Tibavesco [16] and Blum [17]. 

In the SEM the Mayer f function for ions of opposite sign is defined 
by 

f +_ = - 1  + L ( 6 ( r -  L)/12, r<<. a (8) 

where ( is called the sticking coefficient and the delta function in Eq. (8) 
mimics bonding. The presence of a delta function in the f function induces 
a delta function in the correlation function h+_(r) with a different coef- 
ficient, 2, known as the association parameter: 

h+_ = - 1  + L 2 6 ( r - L ) / 1 2 ,  r<~a (9) 

The interaction between ions of the same sign is taken to be a pure hard 
sphere repulsion for r~< a. It follows from simple steric considerations 
that an exact solution will predict dimerization only if L <  ~/2 but 
polymerization may occur for a/2 < L <~ a. However, an approximate solu- 
tion may not show the full extent of polymerization that could occur in a 
more accurate or exact theory when L ~ a / 2  [-18, 19]. This can be 
exploited to advantage if we wish to suppress association beyond the 
formation of dimers. 

The association ratio K defined by K=pAB/pApB is easily found to 
be [12] 

K -  7r2(L/~ 
3(1 - (N>) 2 (10) 

where the average number of dimers <N> = rl2(L/a) 3 and r / :  zpa3/6, in 
which p is the total ionic density. We can now distinguish three different 
cases [18, 19]: 
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2 = 0 No dimers Strong electrolyte (RPM) 

2 = (a/L)3/q All dimers if L < a/2 Dipolar dumbells 

0 < 2 < (a/L)3/tl Ions + dimers Weak electrolyte (SEM) 

Either the same or different approximations may be used to treat the 
binding at r = L and the remaining electrical interactions between the ions. 
The use of PY approximation for the binding in weak electrolytes leads to 
negative values for 2, prompting Lee etal. [18] to employ the H N C  
approximation for the binding and the MSA for the interactions between 
the ions. Analytic solutions to this hybrid (HNC/MSA)  approximation 
were obtained by an extension [15] of Wiener -Hopf  factorization techni- 
ques used for nonionic systems. Numerical solutions to the H N C  
approximation for both types of interactions present in this model with 
n = 2  and 3 were also obtained by Rasaiah and Lee [19], by a simple 
modification of the procedure employed for strong electrolytes [3].  Rather 
surprisingly the association parameters 2 obtained from the two 
approximations are very nearly the same, although the distribution func- 
tions (g+ + and g + _  ) are quite different, particularly at low concentrations 
(see Fig. 1). The excess energy of the sticky electrolyte system is given by 
[18, 19] 

E ex < N > ( d l n ~  (1 dln~~ teN (11) 

"NkT- ~ -  \--fffl-/-- \ + d In TJ 2 

2500  l J '  i , ' I ' ~ ' ~ I J i , , J ' J ~ ' 

2000  

1500  

1 0 0 0  ~HNC/MSA--SEM 
500  = ~ , ~ . ~  

= 0/2 

o r ~ , E , , [ ~ ,  , , I r , ~ , 
0.0  0.5 1,0 1.5 2.0 

Cst  

Fig. 1. The association parameter ). as a function of the 
electrolyte concentration cst in moles per liter for a 2-2 
electrolyte using the SEM in the HNC/MS approximation. 
The dielectric constant e 0= 78.358, the temperature 
T= 298 K, and the ion diameter a = 4.2 A. The sticking 
coefficient ~ = 1.63 x 10 6 and 2.44 x 10 6 for L := a/2 and a/3, 
respectively (from Ref. 19). 
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where 

H =  tc ; )  hD(r) rdr (12) 

and hD(r )=  [h+ ( r ) - h +  +(r)]/2. The first term in Eq. (11) is the binding 
energy and the second is the energy due to the interactions between the 
charges, which can be determined analytically in the MSA. For  any integer 
n = alL,  Rasaiah and Lee [19] have shown that H ' =  H / a  has the form 

(al + a2x)  - (a 2 + 2xa3) ~/2 
H ' ( S E M / M S A ) -  (13) 

24a4q 

where ai ( i=  1 to 4) are functions of the reduced ion concentration t/, the 
association parameter  2, and n. When 2 = 0, ai = 1, the average number of 
dimers ( N ) = 0 ,  and the energy of the RPM electrolyte in the MSA is 
recovered [see Eq (6)]. 

The energies of a weak electrolyte calculated analytically from the 
HNC/MSA approximation (HNC for the binding and MSA for the electri- 
cal interactions) and numerically from the H N C  approximation alone are 
very nearly the same. This is illustrated in Fig. 2 for n = 2 and 3, where 
comparison is also made with the energy of the corresponding RPM elec- 
trolyte (2 = 0). The more negative excess energy of the SEM is due mainly 
to the additional binding energy. The osmotic coefficients for the same 

1 
- 0.0 0.5 1.0 1,5 2.0 

Cst 

Fig. 2. The excess energy E ex in units of NkT as a func- 
tion of the electrolyte concentration fst for RPM and SEM 
2-2 electrolytes. The lines and points are the results for the 
HNC/MS and HNC approximations; the other parameters 
are the same as for Fig. 1 (from Ref. 19). 
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Fig. 3. The osmotic coefficient ~b calculated from the virial 
equation as a function of the electrolyte concentration c~t 
for RPM and SEM 2-2 electrolytes using the HNC 
approximation. The parameters are the same as in Fig. 1 
(from Ref. 19). 

systems calculated from the H N C  approx imat ion  using the virial equa t ion  

are compared in Fig. 3; as expected the weak electrolyte has a lower 

osmotic coefficient than  the strong electrolyte. Note  that the excess energies 
and osmotic coefficients are closer to the R P M  results for n = 3 than for 

n = 2. The dis t r ibut ion funct ions for a 2-2  SEM electrolyte with L = a/2 at 
a electrolyte concent ra t ion  of 2.0 molar  are shown in Fig. 4; the differences 

between the H N C  and the H N C / M S A  dis t r ibut ion functions,  a l though 

1.25 
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Fig, 4. 

g +  _, HNC--SEM 

~ SEM 

~ , , ~  g+  +, HNC--SEM 

t 2 3 
rio 

The ion distribution functions g + § (r) and g__ _ (r) 
for the 2-2 electrolyte depicted in Fig, I at a concentration 
c= 2.0 M and L = a/2 (from Ref. 19). 
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small at this concentration, become more pronounced as the concentration 
is decreased [19]. The effects of hard sphere and dipolar solvents on the 
degree of dissociation of a weak electrolyte have also been studied recently 
[20] and it is found that the association parameter 2 is enhanced by the 
packing effect of the solvent and decreased by ion solvation. 

The use of the PY or HNC approximation to determine the degree of 
chemical association for electrolytes and nonelectrolytes does not 
necessarily ensure the equality of the chemical potentials of the products 
and the reactants in Eq. (1). A better procedure would be to determine ), 
by minimizing the free energy with respect to the number of dimers in the 
same that the number of ion pairs is calculated in recent theories of strong 
electrolytes [2, 8, 10]. This will change 2 but leave the analytic expressions 
for the distribution functions and the thermodynamic properties derived in 
the MSA for a weak electrolyte unchanged. 

3. DIPOLAR DUMBELLS 

I have already mentioned the limit 2 = (ff /L)3/rl  with L < a/2 when the 
system should contain dipolar dumbells. In the absence of a solvent, the 
asymptotic form of the direct correlation function (defined through the 
Ornstein-Zernike (OZ) equation) for this system is given by E19] 

cij(r) = -~Aeiej /r  (14) 

where A = e/(e - 1 ) and e is the dielectric constant of the system of dipolar 
dumbells. It follows from Eq. (11) and (13) that the energy of dipolar dum- 
bells, in the absence of a solvent and excluding the ion binding energy, is 
given in the MSA by [22] 

E ex - - x [ ( c  1 Jr c2x '  ) -- (c~ -t- 2c3x ' )  1/2 

N D k T -  24t/ (15) 

where x' is the reduced dipole moment defined by 

x '=  tr 2n(Arcp/k r) 1/2 l z (16) 

in which the dipole moment/~ = el= ea/n, ci (i = 1 to 3) are numbers which 
depend on the dipole elongation L[22] and ND= N/2 is the number of 
dipoles. The solution for the energy in the MSA should apply to dipolar 
dumbells only if L < a/2 but calculations of the distribution functions show 
no evidence of polymerization for L > a/2 in this approximation. This MSA 
solution for dipoles is similar to the analog of the zero-pole approximation 
(ZPA) [23, 24] for the direct correlation function derived from the site-site 
Ornstein Zernike (SSOZ) equation for dipolar dumbells; however, the 
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Fig. 5. The excess energy as a function of the elongation 
L for dipolar dumbells at constant molecular volume. 
The reduced dipole moment /~*= (#2/kTd3)l/2 a n d  dipole 
density p* = pD d3 are 1.37 and 0.78, respectively. Here d is 
the radius of the equivalent hard spheres of the same 
volume (from Ref. 22). 

resul ts  a re  di f ferent  a n d  the  excess ene rgy  de r i ved  f r o m  the  a n a l o g  of  the  

Z P A  is, un l ike  o u r  so lu t ions ,  n o t  equa l  to ze ro  in the  l imi t  o f  ze ro  charge .  

B o t h  so lu t ions ,  howeve r ,  t end  to  a smal l  bu t  f ini te  c o n s t a n t  in the  l imi t  o f  

ze ro  c o n c e n t r a t i o n .  

T h e  p r ed i c t i ons  of  Eq.  (15) are  c o m p a r e d  in Fig.  5 wi th  the  M o n t e  

iilk . . . .  . . . .  . . . .  t 

0 . 0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - - 

g D ( r )  

- 0 . :  , , ~ ) I r p l r I i T i , l ~ L r 

1.0 1.5 2.0 2.5 3.0 

Ho 

Fig. 6. The sum and difference distribution functions 
gs(r) and gD(r) for dipolar dumbells with L =a/2. The 
dotted line is the Monte Carlo result and the solid and 
dashed lines are the MSA calculations with A = 1.0 and 
1,25, respectively. The model parameters are T=253 K, 
a = 3.5 A, p D  O-3 = 0.462, and/~ = 6.2 x 10 -30  C m, where PD 
is the density of the dipoles. #*=(lt2/kTa~)~/2=l.52 
(from Ref. 19). 



10 Rasaiah 

Carlo simulations of the energy of  dipolar dumbells [-25]. In the same 
figure, the energies of dipolar dumbells using the MSA and H N C  approxi-  
mations for the direct correlat ion function defined through the SSOZ 
equation [-26] are also shown. It is apparent  that  all of the calculated 
energies becomes less negative with increasing elongation, in agreement 
with the trends shown by the Monte  Carlo results. In Fig. 6 the sum and 
difference functions gs(r)  = [ g +  (r) + g+ +(r)-]/2 and gD(r) = 
[ g + _ ( r ) - - g + + ( r ) ] / 2  obtained [19]  from the MSA and the OZ equation 
are compared  with the Monte  Carlo calculations for dipolar dumbells 
[27, 28-1; the agreement (for L = a/2) is seen to be quite satisfactory. 
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